Структуры кристаллов - определение. Что такое Структуры кристаллов
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Структуры кристаллов - определение

Габитус (кристаллов); Облик кристаллов; Габитус кристалла
Найдено результатов: 51
Структуры кристаллов      

неорганических соединений, закономерное пространственное расположение атомов, ионов (иногда молекул), составляющих кристаллические вещества. Расшифровка С. к. - одна из основных задач кристаллографии (См. Кристаллография).

В большинстве неорганических соединений молекул нет и имеет место взаимное проникновение бесконечных укладок из катионов и анионов (см. Кристаллическая решётка). Наиболее прост случай структуры, в которой примитивная кубическая решётка (см. Браве решётка) из анионов Cl проложена аналогичной решёткой из катионов Cs; они вставлены одна в другую так, что катион Cs оказывается в центре куба из 8 анионов Cl (и наоборот), т. е. Координационное число (КЧ) равно 8 (рис. 1, a). Зачастую разные вещества имеют структуры одинаковые с точностью до подобия (см. Кристаллохимия), так, структурой CsCI обладают CsBr, CsI, а также галогениды таллия и аммония, и все эти структуры объединяются в единый структурный тип CsCI. Понятие структурный тип - один из критериев сходства или различия строения кристаллов; именуют его обычно по названию одного из веществ, кристаллизующихся в нём. Ниже даётся краткое описание некоторых важнейших структурных типов.

В структурном типе галита NaCI и катионы, и анионы расположены по закону кубической плотнейшей упаковки (см. Упаковки плотнейшие). Каждый катион окружен 6 анионами, и наоборот, т. е. КЧ=6. координационный многогранник - октаэдр (рис. 1,б). В структуре галита кристаллизируются почти все галогениды щелочных (LiF, LiCI,..., NaF, NaCI,..., RbF, RbCI,...) и окислы щёлочноземельных элементов (MgO, CaO и др.), важнейший сульфид PbS и др.

В структурном типе сфалерита ZnS, построенном также на основе закона кубической плотнейшей упаковки, атомы Zn с КЧ = 4 находятся в S-тетраэдрах и наоборот. Этот тип характерен для соединений с существенно ковалентными связями; в нём кристаллизируются CuCI, Cul, HgS и др., а также ряд важнейших полупроводниковых соединений (CdS, GaAs и др.) (рис. 1,в).

Более наглядным является "полиэдрический" способ изображения С. к., при котором анионы представлены точками - вершинами координационных многогранников (полиэдров) (рис. 1, а, б, в). Основой этого способа послужило то, что анионы, обладающие большим, нежели катионы, ионным радиусом (См. Ионные радиусы), предпочтительно располагаются по стандартному узору плотнейшей упаковки. Кроме того, и самих анионов не так уж много (О, S, F и др.), поэтому при описании С. к. достаточно указать только тип укладки анионов. Положение катионов и их КЧ, определяющие специфику С. к., становятся при этом особенно наглядными. Так, на рис. 2, а ясно виден цепочечный характер структуры рутила. TiO2, в котором Ti - октаэдры, связанные друг с другом вершинами, образуют колонки, параллельные ребру элементарной ячейки с. Этот тип структуры распространён среди бинарных соединений (MnO2, SnO2, PbO2, MgF2 и др.). Слоистый характер структурного типа брус и та Mg (OH)2, в котором октаэдры соединены общими ребрами в сплошные слои, иллюстрирует рис. 2, б. В этом типе, помимо ионных, кристаллизируются также многие ковалентные соединения (сульфиды, теллуриды и др.). Структурный тип флюорита CaF2 (рис. 2, в) характерен для соединений с крупными катионами, например CeO2, ThO2 и др. На рис. 2, г показан способ выделения 2/3 заселённых октаэдров в структурном типе корунда Al2O3 - гематита Fe2O3. В структурном типе перовскита CaTiO3 кристаллизуется важнейший сегнетоэлектрик BaTiO3 (рис. 2, д). Крупные катионы Ba, расположенные в полостях каркаса из Ti - октаэдров в координации 12, деформируют кубическую ячейку в псевдокубическую.

Полиэдрический способ позволяет описывать также сложные структурные мотивы, которые отражают пространственное распределение прочнейших связей между атомами (ионами) в структуре. К одному структурному мотиву принадлежат все структурные типы, обладающие одинаковым способом связи атомов или атомных полиэдров в пространстве. Выделяют 6 основных структурных мотивов: координационный, островной, кольцевой, цепочечный, слоистый, каркасный.

Координационный мотив характеризуется равномерным распределением межатомных связей в 3 измерениях (рис. 1, а). К островному относятся структурные типы, заключающие конечные радикалы (острова), прочность связи внутри которых значительно выше, чем с окружающими атомами. Эти радикалы могут быть простыми и иметь линейную (S2, As2, Cl2, S и др.), треугольную (BO3, СО3 и др.), тетраэдрическую (SiO4, PO4, BF4 и др.) формы или сложными, состоящими из двух полиэдров, например B2O5, Si2O7, Tl2Cl9 и т.п., и более сложных ассоциаций. Кольцевой мотив характеризуется наличием в структуре атомов (например, S) или атомных полиэдров (SO4, PO4 и др.), прочно связанных между собой в кольца различной конфигурации (трёх-, четырёх-, шести-, девятичленные и др.). Цепочечный мотив в отличается ярко выраженной линейной направленностью прочнейших связей в структуре, т. е. ассоциацией атомов (Se, Te и др.) или атомных полиэдров (SiO4, BO4, РО4; BO4; TiO6, ZrO6 и др.) в одном измерении. Цепочки могут быть как простыми, так и сдвоенными (ленты), например [Si4O11] n6n-.[Sb4S6] n0, или более сложной формы. Слоистый мотив характеризуется бесконечной в двух измерениях ассоциацией атомов или атомных полиэдров, образующих т. н. сетки. Этот мотив свойствен слюдам и им подобным слоистым силикатам. Встречаются также в графите, молибдените MoS2, ковеллине Cu2CuS2S и др. Каркасный мотив, также как и координационный, имеет равномерное распределение связей в пространстве, но общими элементами атомных полиэдров являются в основном вершины. Это обусловливает большую рыхлость структурных типов, полости в которых могут заполняться крупными катионами. Обычная форма полиэдров - тетраэдр (SiO4, PO4, BO4, AlO4 и др.) или октаэдр (MoO6, WO6 и др.).

Пять последних мотивов особенно характерны для силикатов и алюмосиликатов, у которых важнейшая роль принадлежит не простейшим одноатомным анионам, а тетраэдрической группе SiO4. Этот элементарный силикатный "кирпич" в большинстве силикатов конденсируется либо в кольца, либо в бесконечные радикалы в одном, двух или трёх измерениях. См. рис. в ст. Силикаты природные.

Лит.: Белов Н. В., Структура ионных кристаллов и металлических фаз. М., 1947; его же, Очерки по структурной минералогии, в кн.: Минералогический сборник, Львов, 1950-75.

Н. В. Белов.

Рис. 1. Структуры: а - CsCl; б - NaCl; в - ZnS. Вверху - общий вид; внизу - полиэдрическое изображение.

Рис. 2. Структурные типы рутила TiO2 (a), брусита Mg(OH)2 (б), флюорита CaF2 (в), корунда Al2O3 (г), перовскита CaTiO3 (д) в полиэдрическом изображении.

Тонкой структуры постоянная         
ФИЗИЧЕСКАЯ ПОСТОЯННАЯ, ХАРАКТЕРИЗУЮЩАЯ СИЛУ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ
Тонкой структуры постоянная; Постоянная Зоммерфельда
(α)

безразмерная величина, образованная из универсальных физических постоянных: , где е - Элементарный электрический заряд, η - Планка постоянная, с - скорость света в вакууме. Согласно наиболее точным измерениям, основанным на Джозефсона эффекте, α = 137,0359±0,0004. Т. с. п. определяет тонкую структуру (См. Тонкая структура) уровней энергии атома (величина тонкого расщепления пропорциональна α2); с этим связано название константы α. В квантовой электродинамике α - естественный параметр, характеризующий "силу" электромагнитного взаимодействия.

Постоянная тонкой структуры         
ФИЗИЧЕСКАЯ ПОСТОЯННАЯ, ХАРАКТЕРИЗУЮЩАЯ СИЛУ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ
Тонкой структуры постоянная; Постоянная Зоммерфельда
Постоя́нная то́нкой структу́ры, обычно обозначаемая как \alpha, является фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она была введена в 1916 году немецким физиком Арнольдом Зоммерфельдом в качестве меры релятивистских поправок при описании атомных спектральных линий в рамках модели атома Бора, то есть характеризует так называемую тонкую структуру спектральных линий.
ТОНКОЙ СТРУКТУРЫ ПОСТОЯННАЯ         
ФИЗИЧЕСКАЯ ПОСТОЯННАЯ, ХАРАКТЕРИЗУЮЩАЯ СИЛУ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ
Тонкой структуры постоянная; Постоянная Зоммерфельда
(?) , безразмерная величина, характеризующая электромагнитное взаимодействие элементарных частиц; ? = 2?e2/ћc ? 1/137 (точнее ?-1=137,0359895 ? 0,000006..1), где e - заряд электрона, ћ - постоянная Планка, c - скорость света. Название связано с тем, что тонкой структуры постоянная определяет тонкое расщепление атомных уровней энергии.
Тестирование полупроводниковых пластин         
  • Оборудование для тестирования полупроводниковой подложки на растяжение-сжатие, может применяться для тестирования адгезии
Тестирование полупроводниковых пластин, тестовый контроль полупроводниковой пластин — один из этапов полупроводникового производства. Во время этого этапа автоматизированные установки тестирования проводят функциональное тестирование интегральных схем, изготовленных на полупроводниковой пластине. Этот этап проводится на неразрезанной пластине и позволяет определить, какие из схем были корректно изготовлены и могут быть переданы на этап корпусирования.
Преступное сообщество         
Преступное сообщество (преступная организация) — организованная преступная группа, созданная для совершения наиболее тяжких преступленийНапример, в уголовном праве России — тяжких и особо тяжких преступлений, то есть умышленных деяний, наказываемых лишением свободы на срок более 5 лет., либо объединение организованных преступных групп. Преступная организация является наиболее опасным видом соучастия; создание преступного сообщества или преступной организации выступает в качестве самостоятельного наказуемого вида преступной деятельности, даже
Изоморфизм (кристаллохимия)         
СВОЙСТВО ЭЛЕМЕНТОВ ЗАМЕЩАТЬ ДРУГ ДРУГА В СТРУКТУРЕ КРИСТАЛЛА
Изоморфизм в кристаллах; Изоморфизм кристаллов; Изоморфизм (химия); Изовалентный изоморфизм; Гетеровалентный изоморфизм; Изовалентное замещение; Гетеровалентное замещение
Изоморфизм (от  — «равный, одинаковый, подобный» и  — «форма») — свойство элементов замещать друг друга в структуре кристалла. Изоморфизм возможен при одинаковых координационных числах атомов, а в ковалентных соединениях при тождественной конфигурации связей.
КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ: СТРУКТУРА КРИСТАЛЛА      
К статье КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ
Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла - это пространственное расположение его атомов (или молекул). Геометрия такого расположения подобна рисунку на обоях, в которых основной элемент рисунка повторяется многократно. Одинаковые точки можно расположить на плоскости пятью разными способами, допускающими бесконечное повторение. Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О.Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14 (рис. 1-1, 1-2).
Требование того, чтобы каждый узел решетки имел одинаковое атомное окружение, применительно к кристаллам налагает ограничения на сам основной элемент рисунка. При повторении он должен заполнять все пространство, не оставляя пустых узлов. Было установлено, что существует лишь 32 варианта расположения объектов вокруг некоторой точки (например, атомов вокруг узла решетки), удовлетворяющих этому требованию. Это так называемые 32 пространственные группы. В сочетании с 14 пространственными решетками они дают 230 возможных вариантов расположения объектов в пространстве, называемых пространственными группами. Поскольку структура кристалла определяется не только пространственным расположением атомов, но и их типом, число структур очень велико. Три кристаллические структуры, представленные на рис. 2, неодинаковы, хотя и относятся к одной и той же пространственной группе.
Общими для всех кристаллов являются 14 пространственных решеток, наименьшие формообразующие ячейки которых показаны на рис. 1. Элементарная ячейка любого кристалла подобна одной из них, но ее размеры определяются размерами, числом и расположением атомов. Элементарная ячейка в виде параллелепипеда, вообще говоря, аналогична "кирпичику" Гаюи, т.е. базисному элементу, при повторении которого образуется кристалл. Рентгеновский анализ позволяет с большой точностью определять длину сторон ячейки и углы между сторонами. Элементарные ячейки очень малы и имеют порядок нанометра (10-9 м). Сторона кубической элементарной ячейки хлорида натрия равна 0,56 нм. Таким образом, в крохотной крупинке обычной поваренной соли содержится примерно миллион элементарных ячеек, уложенных одна к другой.
Методом дифракции рентгеновских лучей (рентгенография) можно определить не только абсолютные размеры элементарной ячейки, но также пространственную группу и даже расположение атомов в пространстве, т.е. структуру кристалла. Важную роль в исследовании кристаллических структур сыграли также методы дифракции электронов (электронография), дифракции нейтронов (нейтронография) и инфракрасной спектроскопии.
КРИСТАЛЛОФИЗИКА         
область физики твердого тела, в которой изучаются физические свойства кристаллов, их зависимость от атомно-кристаллической структуры и изменение этих свойств под влиянием внешних воздействий.
Эволюция галактик         
  • [[Периодическая таблица элементов]] с указанным цветом источником происхождения
  • [[NGC 1300]] — [[спиральная галактика с баром]]
  • красных смещениях]]
ПРОЦЕСС ФОРМИРОВАНИЯ И ЭВОЛЮЦИИ ГАЛАКТИК
Возникновение галактик; Происхождение галактик; Формирование структуры; Образование галактик; Возникновение и эволюция галактик
Эволюция галактик — процесс формирования галактик, а также изменения со временем их параметров: формы, размеров, химического состава и звёздного населения. Формирование галактик началось 12—13 миллиардов лет назад, и хотя эволюция у каждой галактики идёт по-своему, известно множество общих механизмов, которые могут повлиять на эволюцию каждой галактики.

Википедия

Габитус кристаллов

Га́битус криста́ллов (лат. habitus — внешность) — наружный вид кристаллов, определяемый преобладающим развитием граней тех или иных простых форм. Примеры габитусов: призматический, бипирамидальный, ромбоэдрический, кубический и др.

Некоторые авторы в минералогии различают габитус и облик кристаллов. При этом облик относят исключительно к внешнему виду минерала — столбчатый, пластинчатый и др., а габитусом называют основные кристаллографические элементы, определяющие форму кристалла, бипирамидальный, ромбоэдрический и т. п. В этом случае минералы одного и того же облика, например столбчатого, могут иметь различный габитус, например дипирамидальный или призматический.